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A technique is described for solving numerically the fully relativistic equations of fluid 
dynamics, for time-varying flows in two and three space dimensions. Based on the 
particle-in-cell technique, this extension has been developed especially for the investiga- 
tion of high-energy collisions between atomic nuclei. Results are shown of a calculation 
in which an oxygen nucleus (l&O) impacts onto a uranium nucleus (a88U) at a speed 
that is 0.9516 times the vacuum speed of light. 

INTRODUCTION 

It has been suggested that the equations for relativistic fluid dynamics may 
furnish a very useful approximation for the analysis of high-energy collisions 
between atomic nuclei. The model is essentially that of a purely classical collision 
between droplets, with relativistic shocks, rarefactions, and fragmentation. 
Nuclear fluid is described by an equation of state in which pressure varies only 
as a function of rest-frame energy density and nucleon density. Viscosity, Coulomb 
energy, and surface tension are negligible, in contrast to the nonrelativistic circum- 
stances in liquid-drop analyses of nuclear fission and low-energy collisions. 

As a first step in the analysis of high-energy nuclear collisions with this classical 
model, we consider the axially symmetric case of an impact trajectory along the 
line of centers. There is some indication that coincident-pulse experimental 
techniques can distinguish collisions in the laboratory with this restrictive condi- 
tion. Off-axis collisions will require fully three-dimensional solutions of the 
equations, which also are discussed briefly in this paper. 

The technique that we use for solving the equations is an extension of the 
particle-in-cell (PIG) method [l, 21, which has been used widely for the analysis 
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of numerous nonrelativistic fluid flow problems involving large distortions in 
several space dimensions. This paper describes the numerical technique; the results 
of a series of calculations are presented elsewhere [3]. 

THE DIFFERENTIAL EQUATIONS 

The basic variables in the frame of the observer (e.g., the laboratory frame) are 
the conserved quantities, 

N, the number of nucleons per unit volume, 
M, the total momentum per unit volume, 
E, the total energy per unit volume. 

In the local rest frame of the material, the appropriate variables are 

n, the number of nucleons per unit volume, 
E, the total energy per unit volume. 

With the speed of light chosen to be unity throughout, the material velocity is II, 
with cylindrical-coordinate components u and v in the r and z directions, respec- 
tively. Let 

y z (1 - u . u)-l/2. (0 

We can relate quantities in the laboratory frame to those in the local rest frame of 
the material by the equations 

N = yn, (2) 

M = y2(e + P)u, (3) 

E = y2c + (.y2 - l)P, (4) 

in which the pressure P, is a function of E and n, specified by the nuclear equation 
of state. For example, with n, denoting the normal rest-frame nucleon density 
and m, denoting the rest mass of a nucleon, we illustrate the numerical methodology 
with the following form for the equation of state: 

P = $c + n,m&(n/n,). (5) 

With f = n/no , a typical expression for h(t) is given by 

h(e) = -$f - 0.02470 f” + 0.03592 [‘I=. (6) 
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In this nomenclature, the conservation equations describing the dynamics can 
be written 

(m/at) + v . (UN) = 0, (7) 
@M/at) + V . (uM) = -VP, (8) 

@E/at) + ‘? - (uE) = -V . (Pu). (9) 

REPRESENTATION OF THE FLUID 

The PIC-method calculations represent the material by a set of discrete particles, 
each following the motion of an element of fluid. To this extent, the numerical 
procedure is Lagrangian. 

The spatial domain containing the fluid is subdivided into cells, each rectangular 
in cross section and toroidal in its revolution about the axis. The field variables 
are related to this mesh of cells, with the cell-centered values of energy, momentum, 
nucleon density, and velocity representing cellwise averages. The differential 
equations are approximated by finite-difference representations involving the 
cell-centered field variable averages, and in this respect, the numerical procedure 
is Eulerian. 

Subject to prescribed initial and boundary conditions, the numerical solution 
is developed in a sequence of steps or cycles, each representing a small increment 
St, in problem time. Each cycle consists of three phases: 

1. A Lagrangian phase, in which the conserved field variables for each cell 
are advanced to tentative new values, assuming that each cell momentarily follows 
the motion of the fluid. 

2. A rezone phase, in which each cell is returned to its original position, 
and the transport across cell boundaries is calculated. Actually, the cell boundaries 
never move; in this phase the new particle coordinates are calculated and those 
that cross cell boundaries are accompanied by transport of the conserved field 
variables. 

3. Conversion of the altered field variables into rest-frame values, in prepara- 
tion for proceeding to the next cycle. 

In creating the initial configuration for a computer calculation, each particle 
is assigned coordinates and the total number (noninteger) of nucleons it carries, 
this last remaining constant throughout the calculation. The initial configuration 
represents the two nuclei before collision, each with rest-frame number density 
of nucleons n, , and a corresponding laboratory-frame number density, NO . 
Particles are created in a uniform layout within each cell; the number of nucleons 
vk , carried by particle number k, is calculated for each particle lying in the fluid 
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to be the product of N,, and the subcell volume associated with the particle; then, 
the coordinate of each particle is altered slightly to give a staggered array. No 
particles are created for subcells whose centers lie outside of either atomic nucleus, 
thus exploiting the PIC-method capability for delineating the edges of material 
regions. 

The initial density of energy or momentum in each cell is calculated to be the 
specified uniform value for the nucleus times the ratio of the actual number of 
nucleons in the cell to the number that would be present if the cell were full. Thus, 
the density of each quantity is the true microscopic density only for completely 
full cells, and proper account will be required for the fact that they are not true 
microscopic densities for partially filled cells near the edges of the material. 

NUMERICAL SOLUTION 

Phase 1. The convective fluxes are ignored, and the number density of nucleons 
for each cell is held constant. Accordingly, for this phase, we write 

aMfat = --VP, (10) 

aE/at = -v . Vu). (11) 

Introducing finite-difference nomenclature, we label cell centers in the r direction 
with index i, and those in the z direction with index j. Tentative new values for 
this phase of the calculation are labeled with a tilde. Cell-edge quantities, labeled 
with half-integer indices, are always to be calculated as averages of the two adjacent 
cell-center quantities. Our equations thus become 

Pxx - WA: = 
St - & v:+1,2 - ptld, (12) 

<*A: - wzx = St _ i (p:+‘/z - pi-1’4, 

j$i - &j 
St = - & (P~+l12u~+l12ri+l~2 - Pt1~24-l~2ri-l~2) 

_ k (p:+1/2u:+1/2 _ ,~-1/,~-1/2). 

(13) 

(14) 

These equations are employed even for the partially filled cells along the material 
edge, despite the fact that in these cells the field variables do not represent the 
actual microscopic densities. The validity of this procedure can be demonstrated 
for those edge cells that are adjacent to a nearly vertical or horizontal interface. 
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For an oblique interface, the procedure may introduce an error into the flux to 
or from an edge cell, but with sufficiently fine resolution the error appears to be 
negligible. 

The boundary condition at the edge of the material is P = 0, which is accom- 
plished by setting the cell-edge pressure equal to zero whenever a cell with material 
is adjacent to an empty cell. Along the symmetry axis, aP/ar = 0, so that the 
pressure on the axis is equal to the pressure at the adjacent cell center. 

Calculation of the tilde quantities from these equations for all cells with material 
completes the first phase of the cycle. 

Phase 2. The particle movement takes place in identically the same way as 
in our previous PIC-method calculations [2]. Each particle is given an effective 
velocity for its motion by means of an area-weighted interpolation among the 
four nearest cell-center velocities. New coordinates for each particle are calculated 
appropriate to following the effective velocity for a time interval St. If the particle 
still lies in the same cell, then there is no further effect from its motion. If it has 
crossed to a new cell, then it carries some number of nucleons, together with 
some momentum and energy. These must be subtracted from the donor cell and 
added to the acceptor cell. 

To accomplish the convective transport, the code converts all densities to cell- 
wise totals before any particles are moved. With cell volume 7i , equal to 2nri 6r 62, 
the conversion is given simply by 

mif = TiN.i 

(ii&): = T,cnia:‘,’ 

in which the bar designates a cell-wise total. If particle number k crosses a cell 
boundary, then vg is subtracted from m for the donor cell and added to m for 
the acceptor cell. If the totals of the donor cell quantities just before the movement 
of that particular particle are R, , E, , (M,)d, and (Mz), , then the amounts of 
energy and momentum carried by the particle, to be subtracted from the donor 
cell and added to the acceptor cell, are 

After all the particles have been moved, the bar quantities are converted back 
to densities by dividing each by ri , thereby concluding the calculations for the 
second phase of the cycle. 
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Phase 3. The two previous phases have obtained the new field variable values 
in the laboratory frame, but to proceed with these calculations again in the next 
cycle requires updating the field variables in the local rest frame of the material. 
For this purpose, Eqs. (2)-(4) must be solved for n, E, and u, using the newly 
updated values of N, E, and M. Two cases must be distinguished, the “interior” 
cells and the “edge” cells. We define an interior cell as any fluid cell whose eight 
neighbors are also all fluid cells, and an edge cell as any fluid cell with at least 
one empty cell among its eight neighbors. 

Consider the interior cells first. With 

A = N/no, 

B = Wnomo>, 
C = M - M/(n,mo)2, 

x=u’u 2 

Y = d(nomoL 

the equations to be solved for x, y, and [ in terms of the known quantities A, B, 
and C, become 

A2(1 - x) = p, (18) 

B(1 - X) = ~(1 + 3~) + xh(0, (19) 
C(l - x)” = x[$y + h(Z)]“. (20) 

These three equations can be combined to give 

Numerical solution can be accomplished efficiently in most cases by successive 
substitution into the right side of Eq. (21), with 4 = 0, initially. The procedure 
converges slightly more slowly than Newton’s method, but avoids ambiguities 
of multiple roots. With [ determined by this procedure, the rest of the unknown 
quantities are calculated easily from the equations 

x = 1 - (f2/A2), 

y = [B(l - x) - MRl/U + $9, 
n = no& 
E = nomoy, 
P = $6 + nom&3, 
u = M[x/(M - M)]‘i2. 
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The second case is that of the edge cells. For these we do not know the actual 
volume occupied by the fluid, which is necessary for Eqs. (2)-(4), in which N, 
M, and E are the microscopic densities in the fluid, not the smeared density across 
the whole cell that our finite-difference field variables denote. If Nmrcro were 
known, then its value would be given by 

in which we continue the same nomenclature as used in inverting the equations 
for the interior (full) cells. Then, we would also have 

E micro = ENnicrolN 

Mmicro = MNmicro/N. 

Because Nmicro is unknown at this stage, an additional equation is required. 
To supply it, we specify [ = 1.0, which, as in previous nonrelativistic PIC-method 
codes, states that the local-rest-frame number density is the “normal” density 
of nuclear fluid. Accordingly, the equations for x and y become, after appropriate 
alterations to Eqs. (3) and (4) 

B(l - X)1/2/A = y(1 + ;ix) + x/z(l), (22) 
C(1 - X)/A2 = x[5y/3 + h(l)]2. (23) 

Again, these equations can be combined into a single one, in this case for x, and 
again are solved best by successive substitution. 

The inversion procedures for interior and edge cells described above are those 
that are normally used in Phase 3. There are, however, some difficulties that can 
occur, which require special consideration. Foremost among these is the occasional 
occurrence of a computational cell for which there is only a spurious root with 
x > 1. Such a circumstance is physically impossible, corresponding to material 
speeds exceeding that of light. Nevertheless, the calculations occasionally do lead 
to such cells, especially at the material edge. This situation can be anticipated 
whenever C > B2. The circumstances are apparently always associated with 
stagnation of the fluid relative to the computational mesh, in which case the 
energy flux vanishes, but the momentum flux, which can enhance the value of C, 
remains appreciable. A decrease in the time step per cycle helps to avoid the 
difficulty, but whenever it nevertheless occurs, the computer code bypasses the 
inversion and lets the fluid “coast” with the same speed as in the neighboring 
fluid cells. 

In rare cases, usually when the density, IZ, is very small, the successive substitution 
method in Eq. (21) does not converge, usually indicated at an early step along 
the way by a negative value for the quantity within the brace. In these circum- 
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stances, the difficulty can be circumvented by an alternative successive substitution 
equation obtained by solving Eq. (21) for the f appearing in the linear term of 
h(t), that is, the first term on the right side of Eq. (6). 

Likewise, there are several alternative ways to combine Eqs. (22) and (23) for 
solution by successive substitution, depending on whether or not the root for x 
is very close to unity. For usual circumstances, with x not close to unity, we use 

3 + 2x 
I 

2 

5B + 3Ah(l)(l - x)l’% * 

Evidence of trouble with this solution procedure is usually in the form of x exceed- 
ing unity at an early stage of the iteration. If this occurs, we replace the equation 
by one in which the expression is rearranged to solve for the x occurring in 
(1 - X)1/Z. 

EXTENSION TO THREE DIMENSIONS 

The analysis of off-axis collisions requires fully three-dimensional calculations, 
which can be accomplished by means of a relatively simple extension of the above 
procedures. A Cartesian mesh is used, with velocity components U, ZJ, and w in 
the x, y, and z directions, respectively. Correspondingly, we require three com- 
ponents of momentum in the laboratory frame, for which the calculations in 
Phase 1 are directly analogous to those in Eqs. (12) and (13). Likewise, the changes 
of energy in the laboratory frame are accomplished by means of a direct extension 
of Eq. (14). 

The target particles themselves now all carry the same (noninteger) number of 
nucleons, and the same holds in the projectile, for which, however, the number 
of nucleons per particle will usually differ from the number per particle in the 
target. 

The movement of these particles in Phase 2 is accomplished by a volume- 
weighted average of velocities in the adjacent cells, much like the area-weighted 
average used in most previous PIGmethod studies. The adjustments to cellwise 
totals of energy and momentum are calculated by means of the same fractions 
described for the two-dimensional case. 

The inversion in Phase 3 is independent of the number of dimensions. The same 
difficulties encountered in the axially-symmetric calculations can be expected for 
the three-dimensional studies, and can be overcome by the same procedures. 

Perhaps the most difficult aspect of fully three-dimensional calculations is the 
relatively large amount of computer time required. Even accounting for the plane 
of symmetry that is present for nucleus-nucleus collision studies, it can be expected 
that the computer time per problem will increase over the two-dimensional studies 
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at least in proportion to the number of finite-difference cells required to resolve 
the third linear dimension. In addition, the full investigation of each nuclear system 
and incident energy will require five or so runs, with different displacements of 
the projectile’s incoming vector from the center of the target. 

Thus, we conclude that fully three-dimensional calculations can be accomplished 
by means of conceptually simple extensions of the techniques described in this 
paper, but at the cost of considerably greater computing time per problem. 

FIG. 1. Several stages in a relativistic PIGmethod calculation of the impact of an oxygen 
(‘$0) nucleus onto a uranium (288U) target. Tensions (negative pressures) are ignored. 
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EXAMPLE 

Examples of nucleus-nucleus impact performed by this relativistic PIC-method 
extension are described elsewhere [3]. Here, we show a single case to illustrate 
the type of studies that can be done. 

Figure 1 depicts several stages in the impact of an oxygen (160) nucleus onto 
a uranium (238U) target, at a laboratory bombarding energy of 2.10 GeV per 
projectile nucleon, corresponding to a projectile speed that is 0.9516 times the 
vacuum speed of light. This typical example of a two-dimensional calculation 
employed a computing mesh 35 cells in the r direction by 50 cells in the z direction, 
scaled such that there were 10 cells across the radius of the target. The calculation 
was considered complete when target debris reached the bottom boundary of the 
mesh, and it required 82 set on the CDC 7600 computer. Compression of the 
particle spacing shows the occurrence of shocks, followed by a visible rarefying 
as the nuclear fluid flies apart. The computer code summarizes the energy and 
angular distributions of the material motion, which are the primary data for 
comparison with experiments. 

At the high energies of interest, the viscosity, Coulomb energy, and surface 
tension of the nuclear material are negligible, and have been omitted. Also, no 
explicit artificial viscosity is required for these calculations, since the PIC method 
supplies sufficient dissipation as long as the perturbed parts of the fluid are not 
stagnant relative to the mesh, the effective kinematic viscosity being estimated 
by s 6x/2, in which s is the local fluid speed and 6x refers to either 6r or 6~. 

The capability to sustain tension (negative pressure), however, is of possible 
significance. Tn the laboratory, an effect of the attractive nuclear force is the 
condensation of nuclear material into clusters such as alpha particles. The calcula- 
tion in Fig. 1 ignores any negative pressures. Figure 2, in contrast, is the same 
calculation except for an allowance for tension of unlimited magnitude, and the 

FIG. 2. Corresponding to the final frame of Fig. 1, this calculation is identical except for the 
allowance of negative pressures of unlimited magnitude. 
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presence of clumping is clearly evident. The dimensions of the clumps, however, 
are somewhat smaller than the computational cells, so that detailed corre- 
spondence with physical reality is not to be expected. The problem time in Fig. 2 
corresponds to that of the final frame of Fig. 1. 
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